In the visualization panes, the "Z" axis is the center; and "Y" and "X" are to its left and right, respectively. "Z" represents the Axial view for RAI-to-LPS images.
| Feature Family | Specific Features
 | Parameter Name
 | Range | Default | Description, Formula and Comments | 
| First Order
 Statistics
 | 
Minimum 
Maximum 
Mean 
Standard Deviation 
Variance 
Skewness 
Kurtosis  | N.A. | N.A. | N.A. | 
Minimum Intensity = \( Min (I_{k}). \) where \( I_{k} \) is the intensity of pixel or voxel at index k. 
Maximum Intensity = \( Max (I_{k}). \) where \( I_{k} \) is the intensity of pixel or voxel at index k. 
Mean= \( \frac{\sum(X_{i})}{N} \) where N is the number of voxels/pixels. 
Standard Deviation = \( \sqrt{\frac{\sum(X-\mu)^{2}}{N}}\) where \(\mu\) is the mean of the data. 
Variance = \( \frac{\sum(X-\mu)^{2}}{N} \) where \(\mu\) is the mean intensity. 
Skewness = \( \frac{\sum_{i=1}^{N}(X_{i} - \bar{X})^{3}/N} {s^{3}} \) where \(\bar{X}\) is the mean, s is the standard deviation and N is the number of pixels/voxels. 
Kurtosis = \( \frac{\sum_{i=1}^{N}(X_{i} - \bar{X})^{4}/N}{s^{4}} \) where \(\bar{X}\) is the mean, s is the standard deviation and N is the number of pixels/voxels.  
 | 
| Histogram -based
 |  | Num_Bins | N.A. | 10 | 
Uses number of bins as input and the number of pixels in each bin would be the output.  | 
| Volumetric |  | Dimensions Axis
 | 2D:3D x,y,z
 | 3D z
 | 
Volume/Area (depending on image dimension) and number of voxels/pixels in the ROI.  | 
| Morphologic | 
Elongation 
Perimeter 
Roundness 
Eccentricity  | Dimensions Axis
 | 2D:3D x,y,z
 | 3D z
 | 
Elongation = \( \sqrt{\frac{i_{2}}{i_{1}}} \) where i_{n} are the second moments of particle around its principal axes. 
Perimeter = \( 2 \pi r \) where r is the radius of the circle enclosing the shape. 
Roundness = \( As/Ac = (Area of a shape)/(Area of circle) \) where circle has the same perimeter. 
Eccentricity = \( \sqrt{1 - \frac{a*b}{c^{2}}} \) where c is the longest semi-principal axis of an ellipsoid fitted on an ROI, and a and b are the 2nd and 3rd longest semi-principal axes of the ellipsoid.  | 
| Local Binary Pattern (LBP)
 |  | Radius Neighborhood
 | N.A. 2:4:8
 | N.A. 8
 | 
The LBP codes are computed using N sampling points on a circle of radius R and using mapping table.  | 
| Grey Level Co-occurrence
 Matrix
 (GLCM)
 | 
Energy 
Contrast 
Entropy 
Homogeneity 
Correlation 
Variance 
SumAverage 
Variance 
AutoCorrelation
 
 | Num_Bins 
 Num_Directions
 
 Radius
 
 Dimensions
 
 Offset
 
 Axis
 | N.A. 
 3:13
 
 N.A.
 
 2D:3D
 
 Average/Individual
 
 x,y,z
 | 10 
 13
 
 2
 
 3D
 
 Average
 
 z
 | For a given image, a Grey Level Cooccurrence Matrix is created and \( g(i,j) \) represents an element in matrix 
All features are estimated within the ROI in an image, considering 26-connected neighboring voxels in the 3D volume.
Energy = \( \sum_{i,j}g(i, j)^2 \) 
Contrast = \( \sum_{i,j}(i - j)^2g(i, j) \) 
Entropy = \( -\sum_{i,j}g(i, j) \log_2 g(i, j) \) 
Homogeneity = \( \sum_{i,j}\frac{1}{1 + (i - j)^2}g(i, j) \) 
Correlation = \( \sum_{i,j}\frac{(i - \mu)(j - \mu)g(i, j)}{\sigma^2} \) 
Sum Average = \( \sum_{i,j}i \cdot g(i, j) = \sum_{i,j}j \cdot g(i, j)\)(due to matrix summetry) 
Variance = \( \sum_{i,j}(i - \mu)^2 \cdot g(i, j) = \sum_{i,j}(j - \mu)^2 \cdot g(i, j)\) (due to matrix summetry) 
AutoCorrelation = \(\frac{\sum_{i,j}(i, j) g(i, j)-\mu_t^2}{\sigma_t^2}\) where \(\mu_t\) and \(\sigma_t\) are the mean and standard deviation of the row (or column, due to symmetry) sums.  
 | 
| Grey Level Run-Length
 Matrix
 (GLRLM)
 | 
SRE 
LRE 
GLN 
RLN 
LGRE 
HGRE 
SRLGE 
SRHGE 
LRLGE 
LRHGE 
 | Num_Bins 
 Num_Directions
 
 Radius
 
 Dimensions
 
 Axis
 
 Offset
 
 Distance_Range
 | N.A. 
 3:13
 
 
 N.A.
 
 2D:3D
 
 x,y,z
 
 Average/Individual
 
 1:5
 | 10 
 13
 
 
 2
 
 3D
 
 z
 
 Average
 
 1
 | For a given image, a run-length matrix \( P(i; j)\) is defined as the number of runs with pixels of gray level i and run length j. 
All features are estimated within the ROI in an image, considering 26-connected neighboring voxels in the 3D volume.
Short Run Emphasis (SRE) = \( \frac{1}{n_r}\sum_{i,j}^{N}\frac{p(i,j)}{j^2} \) 
Long Run Emphasis (LRE) = \( \frac{1}{n_r}\sum_{j}^{N}p(i,j) \cdot j^2\) 
Grey Level Non-uniformity (GLN) = \( \frac{1}{n_r}\sum_{i}^{M}\Big(\sum_{j}^{N}p(i,j) \Big)^2 \) 
Run Length Non-uniformity (RLN) = \( \frac{1}{n_r}\sum_{j}^{N}\Big(\sum_{i}^{M}p(i,j) \Big)^2 \) 
Low Grey-Level Run Emphasis (LGRE)= \( \frac{1}{n_r}\sum_{i}^{M}\frac{p_g(i)}{i^2} \) 
High Grey-Level Run Emphasis (HGRE)= \( \frac{1}{n_r}\sum_{i}^{M}p_g(i) \cdot i^2 \) 
Short Run Low Grey-Level Emphasis (SRLGE)= \(\frac{1}{n_r}\sum_{i}^{M}\sum_{j}^{N}\frac{p(i,j)}{i^2 \cdot j^2} \) 
Short Run High Grey-Level Emphasis (SRLGE) = \( \frac{1}{n_r}\sum_{i}^{M}\sum_{j}^{N}\frac{p(i,j) \cdot i^2 }{j^2}\) 
Long Run Low Grey-Level Emphasis (LRLGE) = \( \frac{1}{n_r}\sum_{i}^{M}\sum_{j}^{N}\frac{p(i,j) \cdot j^2 }{i^2} \) 
Long Run High Grey-Level Emphasis (LRHGE) = \( \frac{1}{n_r}\sum_{i}^{M}\sum_{j}^{N}p(i,j) \cdot i^2 \cdot j^2 \)  | 
| Neighborhood Grey-Tone
 Difference
 Matrix
 (NGTDM)
 | 
Coarseness 
Contrast 
Busyness 
Complexity 
Strength  | Num_Bins 
 Num_Directions
 
 Dimensions
 
 Axis
 
 Distance_Range
 | N.A. 
 3:13
 
 
 2D:3D
 
 x,y,z
 
 1:5
 | 10 
 13
 
 
 3D
 
 N.A.
 
 1
 | 
Where \(p_{i}\) is the probability of occurrence of a voxel of intensity i and \(s(i)\) represents the NGTDM value of intensity i calculated as: \( \sum │i - Ai│\). Ai indicates the average intensity of the surrounding voxels without including the central voxel.
Coarseness = \( \Big[ \epsilon + \sum_{i=0}^{G_{k}} p_{i}s(i) \Big]\) 
Contrast = \( \Big[\frac{1}{N_{s}(N_{s}-1)}\sum_{i}^{G_{k}}\sum_{j}^{G_{k}}p_{i}p_{j}(i-j)^2\Big]\Big[\frac{1}{n^2}\sum_{i}^{G_{k}}s(i)\Big] \) 
Busyness = \( \Big[\sum_{i}^{G_{k}}p_{i}s(i)\Big]\Big/ \Big[\sum_{i}^{G_{k}}\sum_{j}^{G_{k}}i p_{i} - j p_{j}\Big] \) 
Complexity = \( \sum_{i}^{G_{k}}\sum_{j}^{G_{k}} \Big[ \frac{(|i-j|)}{(n^{2}(p_{i}+p_{j}))} \Big] \Big[ p_{i}s(i)+p_{j}s(j) \Big]\) 
Strength = \( \Big[\sum_{i}^{G_{k}}\sum_{j}^{G_{k}}(p_{i}+p_{j})(i-j)^{2}\Big]/\Big[\epsilon + \sum_{i}^{G_{k}} s(i)\Big]\)  
 | 
| Grey Level Size-Zone
 Matrix
 (GLSZM)
 | 
SZE 
LZE 
GLN 
ZSN 
ZP 
LGZE 
HGZE 
SZLGE 
SZHGE 
LZLGE 
LZHGE 
GLV 
ZLV 
 | Num_Bins 
 Num_Directions
 
 Radius
 
 Dimensions
 
 Axis
 
 Distance_Range
 | N.A. 
 3:13
 
 
 N.A.
 
 2D:3D
 
 x,y,z
 
 1:5
 | 10 
 13
 
 
 2
 
 3D
 
 z
 
 4
 | For a given image, a run-length matrix \( P(i; j)\) is defined as the number of runs with pixels of gray level i and run length j.  
Small Zone Emphasis (SZE) = \( \frac{1}{n_r}\sum_{i,j}^{N}\frac{p(i,j)}{j^2} \) 
Large Zone Emphasis(LZE) = \( \frac{1}{n_r}\sum_{j}^{N}p(i,j) \cdot j^2\) 
Gray-Level Nonuniformity (GLN) = \( \frac{1}{n_r}\sum_{i}^{M}\Big(\sum_{j}^{N}p(i,j) \Big)^2 \) 
Zone-Size Nonuniformity (ZSN) = \( \frac{1}{n_r}\sum_{j}^{N}\Big(\sum_{i}^{M}p(i,j) \Big)^2 \) 
Zone Percentage (ZP) = \( \frac{n_{r}}{n_p} \) where \( n_r \) is the total number of runs and \( n_p \) is the number of pixels in the image. 
Low Grey-Level Zone Emphasis (LGZE)= \( \frac{1}{n_r}\sum_{i}^{M}\frac{p_g(i)}{i^2} \) 
High Grey-Level Zone Emphasis (HGZE)= \( \frac{1}{n_r}\sum_{i}^{M}p_g(i) \cdot i^2 \) 
Short Zone Low Grey-Level Emphasis (SZLGE)= \(\frac{1}{n_r}\sum_{i}^{M}\sum_{j}^{N}\frac{p(i,j)}{i^2 \cdot j^2} \) 
Short Zone High Grey-Level Emphasis (SZLGE) = \( \frac{1}{n_r}\sum_{i}^{M}\sum_{j}^{N}\frac{p(i,j) \cdot i^2 }{j^2}\) 
Long Zone Low Grey-Level Emphasis (LZLGE) = \( \frac{1}{n_r}\sum_{i}^{M}\sum_{j}^{N}\frac{p(i,j) \cdot j^2 }{i^2} \) 
Long Zone High Grey-Level Emphasis (LZHGE) = \( \frac{1}{n_r}\sum_{i}^{M}\sum_{j}^{N}p(i,j) \cdot i^2 \cdot j^2 \)  All features are estimated within the ROI in an image, considering 26-connected neighboring voxels in the 3D volume.  |